Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.118
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731916

ABSTRACT

Herein, we report a series of 1,3-diarylpyrazoles that are analogues of compound 26/HIT 8. We previously identified this molecule as a 'hit' during a high-throughput screening campaign for autophagy inducers. A variety of synthetic strategies were utilized to modify the 1,3-diarylpyrazole core at its 1-, 3-, and 4-position. Compounds were assessed in vitro to identify their cytotoxicity properties. Of note, several compounds in the series displayed relevant cytotoxicity, which warrants scrutiny while interpreting biological activities that have been reported for structurally related molecules. In addition, antiparasitic activities were recorded against a range of human-infective protozoa, including Trypanosoma cruzi, T. brucei rhodesiense, and Leishmania infantum. The most interesting compounds displayed low micromolar whole-cell potencies against individual or several parasitic species, while lacking cytotoxicity against human cells.


Subject(s)
Pyrazoles , Trypanosoma cruzi , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Humans , Trypanosoma cruzi/drug effects , Antiparasitic Agents/pharmacology , Antiparasitic Agents/chemical synthesis , Antiparasitic Agents/chemistry , Drug Design , Leishmania infantum/drug effects , Structure-Activity Relationship , Trypanosoma brucei rhodesiense/drug effects , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry
2.
Drug Dev Res ; 85(3): e22194, 2024 May.
Article in English | MEDLINE | ID: mdl-38704828

ABSTRACT

The aim the present study was to investigate the impact of novel pentavalent organobismuth and organoantimony complexes on membrane integrity and their interaction with DNA, activity against Sb(III)-sensitive and -resistant Leishmania strains and toxicity in mammalian peritoneal macrophages. Ph3M(L)2 type complexes were synthesized, where M = Sb(V) or Bi(V) and L = deprotonated 3-(dimethylamino)benzoic acid or 2-acetylbenzoic acid. Both organobismuth(V) and organoantimony(V) complexes exhibited efficacy at micromolar concentrations against Leishmania amazonensis and L. infantum but only the later ones demonstrated biocompatibility. Ph3Sb(L1)2 and Ph3Bi(L1)2 demonstrated distinct susceptibility profiles compared to inorganic Sb(III)-resistant strains of MRPA-overexpressing L. amazonensis and AQP1-mutated L. guyanensis. These complexes were able to permeate the cell membrane and interact with the Leishmania DNA, suggesting that this effect may contribute to the parasite growth inhibition via apoptosis. Taken altogether, our data substantiate the notion of a distinct mechanism of uptake pathway and action in Leishmania for these organometallic complexes, distinguishing them from the conventional inorganic antimonial drugs.


Subject(s)
Antimony , Antiprotozoal Agents , Cell Membrane , Drug Resistance , Organometallic Compounds , Antimony/pharmacology , Antimony/chemistry , Animals , Organometallic Compounds/pharmacology , Mice , Cell Membrane/drug effects , Antiprotozoal Agents/pharmacology , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/parasitology , Leishmania/drug effects , DNA, Protozoan , Leishmania infantum/drug effects , Leishmania infantum/genetics , Mice, Inbred BALB C
3.
PLoS Negl Trop Dis ; 18(5): e0011637, 2024 May.
Article in English | MEDLINE | ID: mdl-38713648

ABSTRACT

BACKGROUND: Diagnosis of visceral leishmaniasis (VL) in resource-limited endemic regions is currently based on serological testing with rK39 immunochromatographic tests (ICTs). However, rK39 ICT frequently has suboptimal diagnostic accuracy. Furthermore, treatment monitoring and detection of VL relapses is reliant on insensitive and highly invasive tissue aspirate microscopy. Miniature direct-on-blood PCR nucleic acid lateral flow immunoassay (mini-dbPCR-NALFIA) is an innovative and user-friendly molecular tool which does not require DNA extraction and uses a lateral flow strip for result read-out. This assay could be an interesting candidate for more reliable VL diagnosis and safer test of cure at the point of care. METHODOLOGY/PRINCIPLE FINDINGS: The performance of mini-dbPCR-NALFIA for diagnosis of VL in blood was assessed in a laboratory evaluation and compared with the accuracy of rK39 ICTs Kalazar Detect in Spain and IT LEISH in East Africa. Limit of detection of mini-dbPCR-NALFIA was 650 and 500 parasites per mL of blood for Leishmania donovani and Leishmania infantum, respectively. In 146 blood samples from VL-suspected patients from Spain, mini-dbPCR-NALFIA had a sensitivity of 95.8% and specificity 97.2%, while Kalazar Detect had a sensitivity of 71.2% and specificity of 94.5%, compared to a nested PCR reference. For a sample set from 58 VL patients, 10 malaria patients and 68 healthy controls from Ethiopia and Kenya, mini-dbPCR-NALFIA had a pooled sensitivity of 87.9% and pooled specificity of 100% using quantitative PCR as reference standard. IT LEISH sensitivity and specificity in the East African samples were 87.9% and 97.4%, respectively. CONCLUSIONS/SIGNIFICANCE: Mini-dbPCR-NALFIA is a promising tool for simplified molecular diagnosis of VL and follow-up of treated patients in blood samples. Future studies should evaluate its use in endemic, resource-limited settings, where mini-dbPCR-NALFIA may provide an accurate and versatile alternative to rK39 ICTs and aspirate microscopy.


Subject(s)
Leishmania donovani , Leishmaniasis, Visceral , Sensitivity and Specificity , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/parasitology , Humans , Leishmania donovani/genetics , Leishmania donovani/isolation & purification , Immunoassay/methods , Leishmania infantum/genetics , Leishmania infantum/isolation & purification , Polymerase Chain Reaction/methods , Spain , Molecular Diagnostic Techniques/methods , Female , Male , Adult , Adolescent , Child , Young Adult , Middle Aged , Africa, Eastern , DNA, Protozoan/genetics , DNA, Protozoan/blood , Child, Preschool
4.
Parasite Immunol ; 46(5): e13037, 2024 May.
Article in English | MEDLINE | ID: mdl-38720446

ABSTRACT

The treatment for visceral leishmaniasis (VL) causes toxicity in patients, entails high cost and/or leads to the emergence of resistant strains. No human vaccine exists, and diagnosis presents problems related to the sensitivity or specificity of the tests. Here, we tested two phage clones, B1 and D11, which were shown to be protective against Leishmania infantum infection in a murine model as immunotherapeutics to treat mice infected with this parasite species. The phages were used alone or with amphotericin B (AmpB), while other mice received saline, AmpB, a wild-type phage (WTP) or WTP/AmpB. Results showed that the B1/AmpB and D11/AmpB combinations induced polarised Th1-type cellular and humoral responses, which were primed by high levels of parasite-specific IFN-γ, IL-12, TNF-α, nitrite and IgG2a antibodies, which reflected in significant reductions in the parasite load in distinct organs of the animals when analyses were performed 1 and 30 days after the treatments. Reduced organic toxicity was also found in these animals, as compared with the controls. In conclusion, preliminary data suggest the potential of the B1/AmpB and D11/AmpB combinations as immunotherapeutics against L. infantum infection.


Subject(s)
Amphotericin B , Antibodies, Protozoan , Immunotherapy , Leishmania infantum , Leishmaniasis, Visceral , Mice, Inbred BALB C , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/drug therapy , Animals , Amphotericin B/therapeutic use , Amphotericin B/administration & dosage , Antibodies, Protozoan/blood , Leishmania infantum/immunology , Leishmania infantum/drug effects , Mice , Immunotherapy/methods , Female , Antiprotozoal Agents/therapeutic use , Antiprotozoal Agents/administration & dosage , Immunoglobulin G/blood , Parasite Load , Disease Models, Animal , Cell Surface Display Techniques , Cytokines/metabolism , Th1 Cells/immunology
5.
Res Vet Sci ; 172: 105256, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38613921

ABSTRACT

Infection and clinical cases of leishmaniasis caused by Leishmania infantum in cats have been increasingly reported in several countries, including Brazil. In this study, we used an enzyme-linked immunosorbent assay (ELISA) and an immunochromatographic test (ICT) based on a recombinant antigen (rKDDR-plus) to detect anti-Leishmania antibodies in cats from an animal shelter in northeastern Brazil. We compared the results with an ELISA using L. infantum crude antigen (ELISA-CA). We also investigated the presence of Leishmania DNA in blood or ocular conjunctival samples as well as the association between Leishmania PCR positivity and serological positivity to feline immunodeficiency virus (FIV), feline leukemia virus (FeLV) and Toxoplasma gondii. Concerning serological assays, a higher positivity was detected using the ICT-rKDDR-plus (7.5%; 7/93) as compared to ELISA-rKDDR-plus (5.4%; 5/93) and ELISA-CA (4.3%; 4/93). Upon PCR testing, 52.7% (49/93) of the ocular conjunctival swabs and 48.3% (44/91) of the blood samples were positive. Together, PCR and serological testing revealed overall positivities of 73.1% (68/93) and 12.9% (12/93), respectively. Among PCR-positive samples, 45.5% (31/68) showed co-infection with FIV, 17.6% (12/68) with FeLV, and 82.3% (56/68) with T. gondii. More than half of the PCR-positive cats showed at least one clinical sign suggestive of leishmaniasis (58.8%; 40/68) and dermatological signs were the most frequent ones (45.5%; 31/68). Both tests employing the recombinant antigen rKDDR-plus (i.e., ICT-rKDDR-plus and ELISA-rKDDR-plus) detected more positive cats than the ELISA-CA but presented low overall accuracy. PCR testing using either blood or ocular conjunctival samples detected much more positive cats than serological tests.


Subject(s)
Cat Diseases , Coinfection , Enzyme-Linked Immunosorbent Assay , Immunodeficiency Virus, Feline , Leishmania infantum , Leukemia Virus, Feline , Recombinant Proteins , Cats , Animals , Cat Diseases/diagnosis , Cat Diseases/parasitology , Cat Diseases/virology , Cat Diseases/blood , Cat Diseases/epidemiology , Brazil/epidemiology , Enzyme-Linked Immunosorbent Assay/veterinary , Immunodeficiency Virus, Feline/isolation & purification , Coinfection/veterinary , Coinfection/parasitology , Coinfection/epidemiology , Coinfection/virology , Leishmania infantum/isolation & purification , Leukemia Virus, Feline/genetics , Leukemia Virus, Feline/immunology , Male , Female , Toxoplasma , Antibodies, Protozoan/blood , Leishmaniasis, Visceral/veterinary , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/epidemiology , Leishmaniasis, Visceral/blood , Polymerase Chain Reaction/veterinary , Toxoplasmosis, Animal/diagnosis , Toxoplasmosis, Animal/epidemiology , Toxoplasmosis, Animal/blood
6.
PLoS Negl Trop Dis ; 18(4): e0012085, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38578804

ABSTRACT

BACKGROUND: In the Mediterranean basin, three Leishmania species have been identified: L. infantum, L. major and L. tropica, causing zoonotic visceral leishmaniasis (VL), zoonotic cutaneous leishmaniasis (CL) and anthroponotic CL, respectively. Despite animal models and genomic/transcriptomic studies provided important insights, the pathogenic determinants modulating the development of VL and CL are still poorly understood. This work aimed to identify host transcriptional signatures shared by cells infected with L. infantum, L. major, and L. tropica, as well as specific transcriptional signatures elicited by parasites causing VL (i.e., L. infantum) and parasites involved in CL (i.e., L. major, L. tropica). METHODOLOGY/PRINCIPAL FINDINGS: U937 cells differentiated into macrophage-like cells were infected with L. infantum, L. major and L. tropica for 24h and 48h, and total RNA was extracted. RNA sequencing, performed on an Illumina NovaSeq 6000 platform, was used to evaluate the transcriptional signatures of infected cells with respect to non-infected cells at both time points. The EdgeR package was used to identify differentially expressed genes (fold change > 2 and FDR-adjusted p-values < 0.05). Then, functional enrichment analysis was employed to identify the enriched ontology terms in which these genes are involved. At 24h post-infection, a common signature of 463 dysregulated genes shared among all infection conditions was recognized, while at 48h post-infection the common signature was reduced to 120 genes. Aside from a common transcriptional response, we evidenced different upregulated functional pathways characterizing L. infantum-infected cells, such as VEGFA-VEGFR2 and NFE2L2-related pathways, indicating vascular remodeling and reduction of oxidative stress as potentially important factors for visceralization. CONCLUSIONS: The identification of pathways elicited by parasites causing VL or CL could lead to new therapeutic strategies for leishmaniasis, combining the canonical anti-leishmania compounds with host-directed therapy.


Subject(s)
Leishmania infantum , Leishmania major , Leishmania tropica , Leishmaniasis, Cutaneous , Leishmaniasis, Visceral , Animals , Humans , Leishmania tropica/genetics , Leishmania infantum/genetics , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Visceral/parasitology , Macrophages
7.
Mikrobiyol Bul ; 58(2): 182-195, 2024 Apr.
Article in Turkish | MEDLINE | ID: mdl-38676585

ABSTRACT

In recent years, isolation of resistant Leishmania species to drugs in use has made it necessary to search alternative molecules that may be drug candidates. In this study, it was aimed to investigate the cytotoxic and in vitro antileishmanial activity of hybrid silver nanoparticle (AgNP) complexes. In this study, three types of nanoparticles (NPs), oxidized amylose-silver (OA-Ag) NPs, oxidized amylose-curcumin (OA-Cur) NPs and oxidized amylose-curcumin-silver (OA-CurAgNP) nanoparticles were synthesized. The cytotoxic activity of the synthesized nanoparticles was determined against L929 mouse fibroblasts and the in vitro antileishmanial activity was determined against Leishmania tropica, Leishmania infantum and Leishmania donovani isolates by the broth microdilution method. It was observed that the hybrid OA-CurAgNP complex obtained by combining curcumin and silver nanoparticles showed cytotoxic effects against L929 mouse fibroblasts at concentrations of 1074 µg/mL and above. IC50 values expressing the antileishmanial activity of the hybrid OA-CurAgNP complex against L.tropica, L.infantum and L.donovani isolates, were found to vary between 95-121 µg/mL, 202-330 µg/mL and 210-254 µg/mL, respectively. Resistance development has emerged as a major challenge in the treatment of leishmaniasis in recent times. Metallic nanoparticles are considered excellent candidates for medical applications due to their chemical and physical properties, as well as their prolonged circulation in the body. The current drugs used for leishmaniasis treatment are highly toxic, while nanoparticles offer advantages such as low toxicity and easy cellular uptake due to their nanoscale dimensions. The identification of strong efficacy in these particles may contribute scientific evidence for their potential use in leishmaniasis treatment. Therefore, the therapeutical value of OA-CurAgNP complex alone in combination with existing drugs should be examined.


Subject(s)
Antiprotozoal Agents , Curcumin , Fibroblasts , Leishmania infantum , Leishmania tropica , Metal Nanoparticles , Silver , Animals , Mice , Silver/pharmacology , Silver/chemistry , Metal Nanoparticles/chemistry , Curcumin/pharmacology , Curcumin/chemistry , Leishmania tropica/drug effects , Leishmania infantum/drug effects , Fibroblasts/drug effects , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/toxicity , Leishmania donovani/drug effects , Inhibitory Concentration 50 , Cell Line
8.
Chem Biol Drug Des ; 103(4): e14525, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38627214

ABSTRACT

An early exploration of the benzothiazole class against two kinetoplastid parasites, Leishmania infantum and Trypanosoma cruzi, has been performed after the identification of a benzothiazole derivative as a suitable antileishmanial initial hit. The first series of derivatives focused on the acyl fragment of its class, evaluating diverse linear and cyclic, alkyl and aromatic substituents, and identified two other potent compounds, the phenyl and cyclohexyl derivatives. Subsequently, new compounds were designed to assess the impact of the presence of diverse substituents on the benzothiazole ring or the replacement of the endocyclic sulfur by other heteroatoms. All compounds showed relatively low cytotoxicity, resulting in decent selectivity indexes for the most active compounds. Ultimately, the in vitro ADME properties of these compounds were assessed, revealing a satisfying water solubility, gastrointestinal permeability, despite their low metabolic stability and high lipophilicity. Consequently, compounds 5 and 6 were identified as promising hits for further hit-to-lead exploration within this benzothiazole class against L. infantum, thus providing promising starting points for the development of antileishmanial candidates.


Subject(s)
Antiprotozoal Agents , Leishmania infantum , Trypanosoma cruzi , Antiprotozoal Agents/pharmacology , Benzothiazoles/pharmacology
9.
Trop Anim Health Prod ; 56(4): 128, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630347

ABSTRACT

Multi-host pathogens that infect various animal species and humans are considered of great importance for public and animal health. Leishmania spp. parasites are a characteristic example of such pathogens. Although leishmaniosis in humans is endemic for about 100 countries around the world it is classified as a neglected tropical disease. There are three main forms of leishmaniosis in humans: cutaneous (CL), visceral (VL) and mucocutaneous leishmaniosis (MCL). Each year, about 30,000 new cases of VL and more than 1 million new cases of CL are recorded. In Europe L. infantum is the dominant species with dogs being reservoir hosts. Apart from dogs, infection has been recorded in various animals, which suggests that other species could play a role in the maintenance of the parasite in nature. Herein we provide an in-depth review of the literature with respect to studies that deal with Leishmania infantum infections in domestic and wild animal species in Europe. Given the fact that domesticated and wild animals could contribute to the incidences of leishmaniosis in humans, the aim of this paper is to provide a comprehensive review which could potentially be used for the development of measures when it comes to the control of the Leishmania infantum parasite.


Subject(s)
Leishmania infantum , Parasites , Humans , Animals , Dogs , Animals, Wild , Europe/epidemiology
10.
PLoS Pathog ; 20(4): e1012181, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38656959

ABSTRACT

Addressing the challenges of quiescence and post-treatment relapse is of utmost importance in the microbiology field. This study shows that Leishmania infantum and L. donovani parasites rapidly enter into quiescence after an estimated 2-3 divisions in both human and mouse bone marrow stem cells. Interestingly, this behavior is not observed in macrophages, which are the primary host cells of the Leishmania parasite. Transcriptional comparison of the quiescent and non-quiescent metabolic states confirmed the overall decrease of gene expression as a hallmark of quiescence. Quiescent amastigotes display a reduced size and signs of a rapid evolutionary adaptation response with genetic alterations. Our study provides further evidence that this quiescent state significantly enhances resistance to treatment. Moreover, transitioning through quiescence is highly compatible with sand fly transmission and increases the potential of parasites to infect cells. Collectively, this work identified stem cells in the bone marrow as a niche where Leishmania quiescence occurs, with important implications for antiparasitic treatment and acquisition of virulence traits.


Subject(s)
Hematopoietic Stem Cells , Leishmania infantum , Animals , Hematopoietic Stem Cells/parasitology , Hematopoietic Stem Cells/metabolism , Mice , Humans , Leishmania donovani/physiology , Macrophages/parasitology , Macrophages/metabolism , Leishmaniasis, Visceral/parasitology , Mice, Inbred C57BL , Mice, Inbred BALB C
11.
Bioorg Med Chem ; 105: 117736, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38677111

ABSTRACT

Leishmaniasis and Chagas disease are neglected tropical diseases caused by Trypanosomatidae parasites. Given the numerous limitations associated with current treatments, such as extended treatment duration, variable efficacy, and severe side effects, there is an urgent imperative to explore novel therapeutic options. This study details the early stages of hit-to-lead optimization for a benzenesulfonyl derivative, denoted as initial hit, against Trypanossoma cruzi (T. cruzi), Leishmania infantum (L. infantum) and Leishmania braziliensis (L. braziliensis). We investigated structure - activity relationships using a series of 26 newly designed derivatives, ultimately yielding potential lead candidates with potent low-micromolar and sub-micromolar activities against T. cruzi and Leishmania spp, respectively, and low in vitro cytotoxicity against mammalian cells. These discoveries emphasize the significant promise of this chemical class in the fight against Chagas disease and leishmaniasis.


Subject(s)
Drug Design , Leishmania infantum , Parasitic Sensitivity Tests , Trypanosoma cruzi , Trypanosoma cruzi/drug effects , Leishmania infantum/drug effects , Structure-Activity Relationship , Molecular Structure , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Dose-Response Relationship, Drug , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Humans , Animals , Sulfones/pharmacology , Sulfones/chemical synthesis , Sulfones/chemistry
12.
Sci Rep ; 14(1): 9870, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38684845

ABSTRACT

Visceral leishmaniasis (VL) is an infectious disease caused by Leishmania infantum. Clinically, VL evolves with systemic impairment, immunosuppression and hyperactivation with hypergammaglobulinemia. Although renal involvement has been recognized, a dearth of understanding about the underlying mechanisms driving acute kidney injury (AKI) in VL remains. We aimed to evaluate the involvement of immunoglobulins (Igs) and immune complexes (CIC) in the occurrence of AKI in VL patients. Fourteen VL patients were evaluated between early treatment and 12 months post-treatment (mpt). Anti-Leishmania Igs, CIC, cystatin C, C3a and C5a were assessed and correlated with AKI markers. Interestingly, high levels of CIC were observed in VL patients up to 6 mpt. Concomitantly, twelve patients met the criteria for AKI, while high levels of cystatin C were observed up to 6 mpt. Plasmatic cystatin C was positively correlated with CIC and Igs. Moreover, C5a was correlated with cystatin C, CIC and Igs. We did not identify any correlation between amphotericin B use and kidney function markers in VL patients, although this association needs to be further explored in subsequent studies. Our data reinforce the presence of an important renal function impairment during VL, suggesting the involvement of Igs, CIC, and C5a in this clinical condition.


Subject(s)
Acute Kidney Injury , Antigen-Antibody Complex , Leishmaniasis, Visceral , Humans , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/blood , Acute Kidney Injury/blood , Acute Kidney Injury/immunology , Acute Kidney Injury/parasitology , Male , Female , Antigen-Antibody Complex/blood , Adult , Biomarkers/blood , Middle Aged , Cystatin C/blood , Adolescent , Young Adult , Amphotericin B/therapeutic use , Leishmania infantum/immunology
13.
Parasite ; 31: 16, 2024.
Article in English | MEDLINE | ID: mdl-38530209

ABSTRACT

The prevalence of asymptomatic leishmaniasis in dogs and their owners in the main endemic areas of France has not been studied to date. The objective of this study was to quantify asymptomatic Leishmania infantum infection in southeast France in healthy people and their dogs using molecular and serological screening techniques. We examined the presence of parasitic DNA using specific PCR targeting kinetoplast DNA (kDNA) and specific antibodies by serology (ELISA for dogs and Western blot for humans) among immunocompetent residents and their dogs in the Alpes-Maritimes. Results from 343 humans and 607 dogs were included. 46.9% (n = 161/343) of humans and 18.3% (n = 111/607) of dogs were PCR positive; 40.2% of humans (n = 138/343) and 9.9% of dogs (n = 60/607) were serology positive. Altogether, 66.2% of humans (n = 227) and 25.7% of dogs (n = 156) had positive serologies and/or positive PCR test results. Short-haired dogs were more frequently infected (71.8%, n = 112) than long-haired dogs (12.2%, n = 19) (p = 0.043). Dogs seemed to be more susceptible to asymptomatic infection according to their breed types (higher infection rates in scenthounds, gun dogs and herding dogs) (p = 0.04). The highest proportion of dogs and human asymptomatic infections was found in the Vence Region, corresponding to 28.2% (n = 20/71) of dogs and 70.5% (n = 31/44) of humans (4.5/100,000 people). In conclusion, the percentage of infections in asymptomatic humans is higher than in asymptomatic dogs in the studied endemic area. It is questionable whether asymptomatic infection in humans constitutes a risk factor for dogs.


Title: Infection asymptomatique à Leishmania infantum chez les chiens et propriétaires de chiens dans une zone endémique du sud-est de la France. Abstract: La prévalence de la leishmaniose asymptomatique chez les chiens et leurs propriétaires dans les principales zones d'endémie françaises n'a pas été étudiée à ce jour. L'objectif de cette étude était de quantifier l'infection asymptomatique à Leishmania infantum dans le sud-est de la France chez des personnes saines et leurs chiens à l'aide de techniques de dépistage moléculaire et sérologique. Nous avons examiné chez des résidents immunocompétents et leurs chiens dans les Alpes-Maritimes la présence d'ADN parasitaire par PCR spécifique ciblant l'ADN du kinétoplaste (ADNk) et d'anticorps spécifiques par sérologie (ELISA pour le chien et Western Blot pour l'homme). Les résultats de 343 humains et 607 chiens ont été inclus; 46,9 % (n = 161/343) des humains et 18,3 % (n = 111/607) des chiens étaient positifs à la PCR et 40,2 % des humains (n = 138/343) et 9,9 % des chiens (n = 60/607) avaient une sérologie positive. Au total, 66,2 % des humains (n = 227) et 25,7 % des chiens (n = 156) avaient des sérologies positives et/ou des résultats de tests PCR positifs. Les chiens à poils courts étaient plus fréquemment infectés (71,8 %, n = 112) que les chiens à poils longs (12,2 %, n = 19) (p = 0,043). Les chiens semblaient plus sensibles à l'infection asymptomatique selon leurs races (taux supérieurs chez les chiens de chasse et chiens de berger) (p = 0,04). La plus forte proportion d'infections asymptomatiques chez les chiens et les humains a été observée dans la Région de Vence, correspondant à 28,2 % (n = 20/71) des chiens et 70,5 % (n = 31/44) des humains (4,5/100 000). personnes). En conclusion, le pourcentage d'infections chez les humains asymptomatiques est plus élevé que chez les chiens asymptomatiques dans la zone d'endémie étudiée. On peut se demander si une infection asymptomatique chez l'homme constitue un facteur de risque pour les chiens.


Subject(s)
Leishmania infantum , Humans , Dogs , Animals , Leishmania infantum/genetics , Asymptomatic Infections/epidemiology , Blotting, Western , Breeding , DNA, Kinetoplast , France/epidemiology
14.
J Infect Public Health ; 17(5): 810-818, 2024 May.
Article in English | MEDLINE | ID: mdl-38522155

ABSTRACT

BACKGROUND: In Europe, up to 70% of visceral leishmaniasis (VL) cases occurring in adults living with HIV. People living with HIV with VL co-infection often display persistent parasitemia, requiring chronic intermittent anti-Leishmania therapies. Consequently, frequent VL relapses and higher mortality rates are common in these individuals. As such, it is of paramount importance to understand the reasons for parasite persistence to improve infection management. METHODS: To outline possible causes for treatment failure in the context of HIV-VL, we followed a person living with HIV-VL co-infection for nine years in a 12-month period. We characterized: HIV-related clinicopathological alterations (CD4+ T counts and viremia) and Leishmania-specific seroreactivity, parasitemia, quantification of pro-inflammatory cytokines upon stimulation and studied a Leishmania clinical isolate recovered during this period. RESULTS: The subject presented controlled viremia and low CD4+ counts. The subject remained PCR positive for Leishmania and also seropositive. The cellular response to parasite antigens was erratic. The isolate was identified as the first Leishmania infantum case with evidence of decreased miltefosine susceptibility in Portugal. CONCLUSION: Treatment failure is a multifactorial process driven by host and parasite determinants. Still, the real-time determination of drug susceptibility profiles in clinical isolates is an unexplored resource in the monitoring of VL.


Subject(s)
Coinfection , HIV Infections , Leishmania infantum , Leishmaniasis, Visceral , Phosphorylcholine/analogs & derivatives , Adult , Humans , Portugal , Coinfection/drug therapy , Parasitemia , Viremia , HIV Infections/complications , HIV Infections/drug therapy , Leishmaniasis, Visceral/complications , Leishmaniasis, Visceral/drug therapy
15.
Phytomedicine ; 128: 155414, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38503155

ABSTRACT

BACKGROUND: Chagas disease and leishmaniasis affect a significant portion of the Latin American population and still lack efficient treatments. In this context, natural products emerge as promising compounds for developing more effective therapies, aiming to mitigate side effects and drug resistance. Notably, species from the Amaryllidaceae family emerge as potential reservoirs of antiparasitic agents due to the presence of diverse biologically active alkaloids. PURPOSE: To assess the anti-Trypanosoma cruzi and anti-Leishmania infantum activity of five isolated alkaloids from Hippeastrum aulicum Herb. (Amaryllidaceae) against different life stages of the parasites using in silico and in vitro assays. Furthermore, molecular docking was employed to evaluate the interaction of the most active alkaloids. METHODS: Five natural isoquinoline alkaloids isolated in suitable quantities for in vitro testing underwent preliminary in silico analysis to predict their potential efficacy against Trypanosoma cruzi (amastigote and trypomastigote forms) and Leishmania infantum (amastigote and promastigote forms). The in vitro antiparasitic activity and mammalian cytotoxicity were investigated with a subsequent comparison of both analysis (in silico and in vitro) findings. Additionally, this study employed the molecular docking technique, utilizing cruzain (T. cruzi) and sterol 14α-demethylase (CYP51, L. infantum) as crucial biological targets for parasite survival, specifically focusing on compounds that exhibited promising activities against both parasites. RESULTS: Through computational techniques, it was identified that the alkaloids haemanthamine (1) and lycorine (8) were the most active against T. cruzi (amastigote and trypomastigote) and L. infantum (amastigote and promastigote), while also revealing unprecedented activity of alkaloid 7­methoxy-O-methyllycorenine (6). The in vitro analysis confirmed the in silico tests, in which compound 1 presented the best activities against the promastigote and amastigote forms of L. infantum with half-maximal inhibitory concentration (IC50) 0.6 µM and 1.78 µM, respectively. Compound 8 exhibited significant activity against the amastigote form of T. cruzi (IC50 7.70 µM), and compound 6 demonstrated activity against the trypomastigote forms of T. cruzi and amastigote of L. infantum, with IC50 values of 89.55 and 86.12 µM, respectively. Molecular docking analyses indicated that alkaloids 1 and 8 exhibited superior interaction energies compared to the inhibitors. CONCLUSION: The hitherto unreported potential of compound 6 against T. cruzi trypomastigotes and L. infantum amastigotes is now brought to the forefront. Furthermore, the acquired dataset signifies that the isolated alkaloids 1 and 8 from H. aulicum might serve as prototypes for subsequent structural refinements aimed at the exploration of novel leads against both T. cruzi and L. infantum parasites.


Subject(s)
Alkaloids , Amaryllidaceae , Isoquinolines , Leishmania infantum , Molecular Docking Simulation , Trypanosoma cruzi , Trypanosoma cruzi/drug effects , Leishmania infantum/drug effects , Amaryllidaceae/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Isoquinolines/pharmacology , Isoquinolines/chemistry , Isoquinolines/isolation & purification , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Humans , Antiparasitic Agents/pharmacology , Antiparasitic Agents/chemistry , Antiparasitic Agents/isolation & purification , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/isolation & purification
16.
Front Immunol ; 15: 1343602, 2024.
Article in English | MEDLINE | ID: mdl-38455048

ABSTRACT

Introduction: Single nucleotide variations (SNVs) are specific genetic variations that commonly occur in a population and often do not manifest phenotypically. However, depending on their location and the type of nucleotide exchanged, an SNV can alter or inhibit the function of the gene in which it occurs. Immunoglobulin G (IgG) receptor genes have exhibited several polymorphisms, including rs1801274, which is found in the FcgRIIa gene. The replacement of A with T results in a Histidine (H) to Arginine (R) substitution, altering the affinity of the IgG receptor for IgG subtypes and C-reactive protein (CRP). In this study, we analyzed rs1801274 and its functional implications concerning L. Infantum uptake and cytokine production. Methods: We genotyped 201 individuals from an endemic area for visceral leishmaniasis to assess the presence of rs1801274 using Taqman probes for a candidate gene study. Additionally, we included seventy individuals from a non-endemic area for a functional study. Subsequently, we isolated and cultivated one-week adherent mononuclear cells (AMCs) derived from the peripheral blood of participants residing in the non-endemic region in the presence of L. infantum promastigotes, with and without antigen-specific IgG and/or CRP. We analyzed the rate of phagocytosis and the production of nitric oxide (NO), tumor necrosis factor (TNF)-a, interleukin (IL)-10, IL-12 p70, IL-1b, IL- 6, and IL-8 in the culture supernatants. Results and discussion: In participants from the endemic region, the A/G (H/R isoform) heterozygous genotype was significantly associated with susceptibility to the disease. Furthermore, SNVs induced a change in the phagocytosis rate in an opsonin-dependent manner. Opsonization with IgG increased the production of IL-10, TNF-a, and IL-6 in AMCs with the H/R isoform, followed by a decrease in NO production. The results presented here suggest that the rs1801274 polymorphism is linked to a higher susceptibility to visceral leishmaniasis.


Subject(s)
Leishmania infantum , Leishmaniasis, Visceral , Humans , Leishmaniasis, Visceral/genetics , Leishmania infantum/genetics , Receptors, IgG/genetics , Interleukin-12 , Tumor Necrosis Factor-alpha , Nucleotides , Protein Isoforms , Genetic Variation , Immunoglobulin G
17.
Antimicrob Agents Chemother ; 68(4): e0155923, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38497616

ABSTRACT

Leishmaniasis remains one of the main public health problems worldwide, with special incidence in the poorest populations. Selenium and its derivatives can be potent therapeutic options against protozoan parasites. In this work, 17 aryl selenoates were synthesized and screened against three species of Leishmania (Leishmania major, Leishmania amazonensis, and Leishmania infantum). Initial screening in promastigotes showed L. infantum species was more sensitive to selenoderivatives than the others. The lead Se-(2-selenocyanatoethyl) thiophene-2-carboselenoate (16) showed a half-maximal effective concentration of 3.07 µM and a selectivity index > 32.57 against L. infantum promastigotes. It was also the most effective of all 17 compounds, decreasing the infection ratio by 90% in L. infantum-infected macrophages with amastigotes at 10 µM. This aryl selenoate did not produce a hemolytic effect on human red blood cells at the studied doses (10-100 µM). Furthermore, the gene expression of infected murine macrophages related to cell death, the cell cycle, and the selenoprotein synthesis pathway in amastigotes was altered, while no changes were observed in their murine homologs, supporting the specificity of Compound 16 against the parasite. Therefore, this work reveals the possible benefits of selenoate derivatives for the treatment of leishmaniasis.


Subject(s)
Antiprotozoal Agents , Leishmania infantum , Leishmania mexicana , Leishmaniasis , Animals , Mice , Humans , Leishmaniasis/drug therapy , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Gene Expression , Mice, Inbred BALB C
18.
PLoS One ; 19(3): e0296777, 2024.
Article in English | MEDLINE | ID: mdl-38478521

ABSTRACT

Leishmaniasis refers to a disease with a wide range of manifestations; and there are three main forms of disease, cutaneous, mucocutaneous, and visceral. Leishmaniasis is one of the diseases with a protozoan agent which is vector-borne. Visceral leishmaniasis (VL) is the most severe form that can be fiercely life-threatening if left untreated. VL can be caused by members of Leishmania donovani complex, in Iran, Leishmania infantum is considered the primary causative agent of VL, resulting in a zoonotic form of VL. The two main goals of our work, which followed our prior sero-epidemiological and entomological survey, were to characterize and conduct a phylogenetic analysis of the Leishmania species that infect people, dogs, and sandflies. The samples were collected throughout 2017, from January to December, so blood samples were collected from humans and dogs, while sandfly samples were collected with sticky traps. DNA extracted from all seropositive samples of humans and dogs, 10% of sero-negative human samples, and all collected sandflies were subjected to kDNA-nested-PCR for tracing parasites. A total of 30 samples, including 20 human samples, 8 dog samples, and 2 sandfly samples, were found positive for the kDNA gene of L. infantum. Sequences were evaluated to study the genetic diversity among the six discovered L. infantum. Based on kDNA, the phylogenetic study of L. infantum demonstrated a high level of genetic variety and a relationship between the host, the parasite's geographic origin, and its genetic diversity.


Subject(s)
Dog Diseases , Leishmania infantum , Leishmaniasis, Visceral , Psychodidae , Humans , Animals , Dogs , DNA, Kinetoplast/genetics , Psychodidae/parasitology , Leishmania infantum/genetics , Phylogeny , Iran/epidemiology , Polymerase Chain Reaction/methods , Leishmaniasis, Visceral/epidemiology , Leishmaniasis, Visceral/veterinary , Leishmaniasis, Visceral/diagnosis , Dog Diseases/diagnosis
19.
PLoS Negl Trop Dis ; 18(3): e0012050, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38527083

ABSTRACT

Pharmacophores such as hydroxyethylamine (HEA) and phthalimide (PHT) have been identified as potential synthons for the development of compounds against various parasitic infections. In order to further advance our progress, we conducted an experiment utilising a collection of PHT and HEA derivatives through phenotypic screening against a diverse set of protist parasites. This approach led to the identification of a number of compounds that exhibited significant effects on the survival of Entamoeba histolytica, Trypanosoma brucei, and multiple life-cycle stages of Leishmania spp. The Leishmania hits were pursued due to the pressing necessity to expand our repertoire of reliable, cost-effective, and efficient medications for the treatment of leishmaniases. Antileishmanials must possess the essential capability to efficiently penetrate the host cells and their compartments in the disease context, to effectively eliminate the intracellular parasite. Hence, we performed a study to assess the effectiveness of eradicating L. infantum intracellular amastigotes in a model of macrophage infection. Among eleven L. infantum growth inhibitors with low-micromolar potency, PHT-39, which carries a trifluoromethyl substitution, demonstrated the highest efficacy in the intramacrophage assay, with an EC50 of 1.2 +/- 3.2 µM. Cytotoxicity testing of PHT-39 in HepG2 cells indicated a promising selectivity of over 90-fold. A chemogenomic profiling approach was conducted using an orthology-based method to elucidate the mode of action of PHT-39. This genome-wide RNA interference library of T. brucei identified sensitivity determinants for PHT-39, which included a P-type ATPase that is crucial for the uptake of miltefosine and amphotericin, strongly indicating a shared route for cellular entry. Notwithstanding the favourable properties and demonstrated efficacy in the Plasmodium berghei infection model, PHT-39 was unable to eradicate L. major infection in a murine infection model of cutaneous leishmaniasis. Currently, PHT-39 is undergoing derivatization to optimize its pharmacological characteristics.


Subject(s)
Antiprotozoal Agents , Leishmania infantum , Leishmania , Leishmaniasis, Cutaneous , Humans , Animals , Mice , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Amphotericin B/therapeutic use , Leishmaniasis, Cutaneous/parasitology , Phthalimides/pharmacology , Phthalimides/therapeutic use
20.
Eur J Med Chem ; 269: 116256, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38461679

ABSTRACT

Visceral leishmaniasis is a potentially fatal disease caused by infection by the intracellular protist pathogens Leishmania donovani or Leishmania infantum. Present therapies are ineffective because of high costs, variable efficacy against different species, the requirement for hospitalization, toxicity and drug resistance. Detailed analysis of previously published hit molecules suggested a crucial role of 'guanidine' linkage for their efficacy against L. donovani. Here we report the design of 2-aminoquinazoline heterocycle as a basic pharmacophore-bearing guanidine linkage. The introduction of various groups and functionality at different positions of the quinazoline scaffold results in enhanced antiparasitic potency with modest host cell cytotoxicity using a physiologically relevant THP-1 transformed macrophage infection model. In terms of the ADME profile, the C7 position of quinazoline was identified as a guiding tool for designing better molecules. The good ADME profile of the compounds suggests that they merit further consideration as lead compounds for treating visceral leishmaniasis.


Subject(s)
Leishmania donovani , Leishmania infantum , Leishmaniasis, Visceral , Humans , Leishmaniasis, Visceral/drug therapy , Antiparasitic Agents/pharmacology , Quinazolines/pharmacology , Quinazolines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...